

Merus closing in on cancer

Corporate Presentation

May 2023

Disclaimer

This presentation (including any oral commentary that accompanies this presentation) contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. All statements contained in this presentation that do not relate to matters of historical fact should be considered forward-looking statements, including without limitation statements regarding the impact our Biclonics® and Triclonics® platforms can have on cancer, our product candidates' potential to treat certain types of tumors, the timing of regulatory filings and the timing and anticipated data readouts, updates or results from our clinical trials and our collaborations, and anticipated cash runway. These forward-looking statements are based on management's current expectations. These statements are neither promises nor guarantees, but involve known and unknown risks, uncertainties and other important factors that may cause our actual results, performance or achievements to be materially different from any future results. performance or achievements expressed or implied by the forward-looking statements, including, but not limited to, the following: we have incurred significant losses, are not currently profitable and may never become profitable; our need for additional funding, which may not be available and which may require us to restrict out operations or require us to relinquish rights to our technologies or antibody candidates; potential delays in regulatory approval and impacts of the COVID-19 pandemic, which would impact our ability to commercialize our product candidates and affect our ability to generate revenue; the unproven approach to therapeutic intervention of our Biclonics[®], and Triclonics[®] technology; our limited operating history; economic, political, regulatory and other risks involved with international operations; the lengthy and expensive process of clinical drug development, which has an uncertain outcome; the unpredictable nature of our early stage development efforts for marketable drugs; potential adverse public reaction to the use of cancer therapies; potential delays in enrollment of patients, which could affect the receipt of necessary regulatory approvals; failure to obtain marketing approval internationally; failure to compete successfully against other drug companies; potential competition from other drug companies if we fail to obtain orphan drug designation or maintain orphan drug exclusivity for our products; our reliance on third parties to conduct our clinical trials and perform clinical development and the potential for those third parties to not perform satisfactorily; our reliance on third parties to manufacture our product candidates, which may delay, prevent or impair our development and commercialization efforts; protection of our proprietary technology; our patents being found invalid or unenforceable; potential lawsuits for infringement of third-party intellectual property; our ability to attract and retain key personnel; managing our growth could result in difficulties.

These and other important factors discussed under the caption "Risk Factors" in our Annual Report on Form 10-Q for the period ended March 31, 2023 filed on May 4, 2023 with the Securities and Exchange Commission, or SEC, and our other reports filed with the SEC, could cause actual results to differ materially from those indicated by the forward-looking statements made in this presentation. Any such forward-looking statements represent management's estimates as of the date of this presentation. While we may elect to update such forward-looking statements at some point in the future, we disclaim any obligation to do so, even if subsequent events cause our views to change.

Merus Overview

Bispecific and trispecific cancer therapeutic candidates in the human IgG format

Leading Multispecific Antibody (Multiclonics®) Platforms

Common light chain format permits broad, high throughput discovery of promising Biclonics® and Triclonics® antibodies with potential for meaningful clinical activity in patients

Established Pipeline with Multiple Active Molecules in the Clinic

Petosemtamab monotherapy and with pembrolizumab in head and neck cancer (HNSCC); Registration-directed trial of **Zeno** in NRG1 fusion (NRG1+) cancer and with androgen deprivation therapy (ADT) in prostate cancer (CRPC); **MCLA-129** in lung and other solid tumors

Near-Term Planned Trial Updates and Strong Cash Position into 2026¹

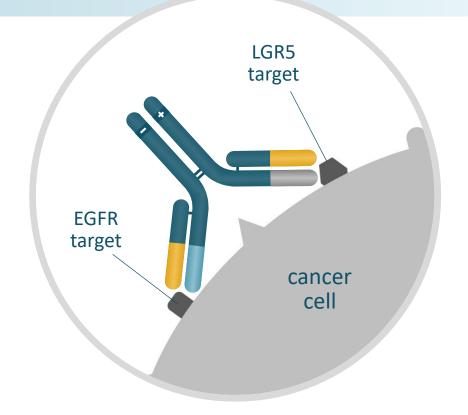
Petosemtamab potential registrational path update planned in Q3 2023; Zeno potential regulatory path and timing update planned in 1H23, clinical update on NRG1+ cancer at a major medical conference in 2023, Zeno in CRPC in 2H23; MCLA-129 in solid tumors in 2H23

Multiple strategic collaborations and license agreements, leading to multiple Biclonics® candidates in clinical development for potential future milestone and royalty opportunities

Merus Clinical Pipeline

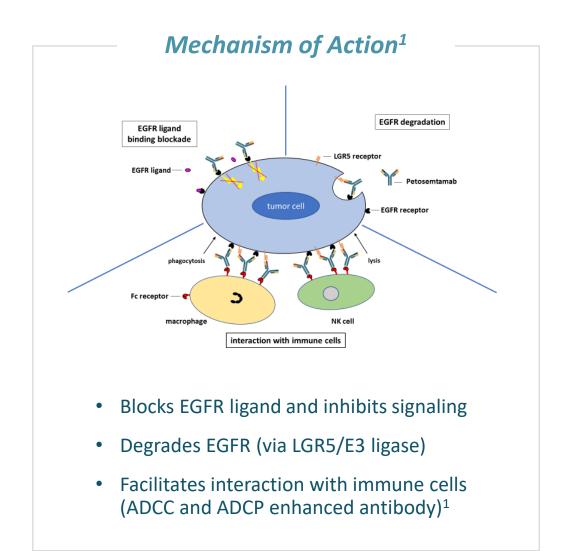
PROGRAM	BISPECIFIC TARGETS	INDICATION(S)	PRECLINICAL	PHASE 1	PHASE 1/2	STATUS
		NRG1+ cancer				Phase 1/2 eNRGy monotherapy registration-
Zenocutuzumab (Zeno) (MCLA-128)	HER2 x HER3	with afatinib in NRG1+ NSCLC with androgen deprivation therapy (ADT) in castration-resistant prostate cancer (CRPC)				 directed trial in NRG1+ cancer Clinical update on Zeno monotherapy in NRG1+ cancer planned 2023
		Other cancers				 Initial clinical data update in CRPC planned 2H23
Petosemtamab	EGFR x LGR5	Head and neck squamous cell carcinoma (HNSCC)				Phase 1/2 trial ongoing
(MCLA-158)		with a PD1 inhibitor in 1L HNSCC				Combination initiated
MCLA-129	EGFR x c-MET	Solid tumors	(China)			Phase 1/2 trial ongoing
		with a 3 rd gen EGFR TKI in NSCLC				Clinical update planned 2H23
MCLA-145	CD137 x PD-L1	Solid tumors with a PD-1 inhibitor in solid tumors				Phase 1 trial ongoing
ONO-4685 ¹	PD-1 x CD3	Relapsed/Refractory T Cell Lymphoma; Psoriasis	ono ono			Phase 1 trial ongoing
INCA32459 ¹	LAG3 x PD-1	Advanced malignancies	(Incyte)			• Phase 1 trial ongoing ²

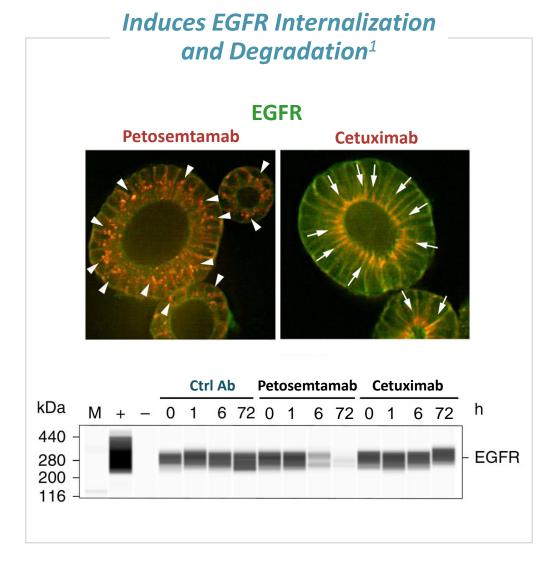
¹ If commercialized, Merus to receive royalties


² Incyte February 7, 2023 10K

Potential first in class EGFR x LGR5 Biclonics® designed to potently block dysregulated signaling and growth in solid tumors¹

Petosemtamab


MCLA-158 EGFR x LGR5 bispecific


- Targets EGFR and LGR5, a cancer-stem cell antigen
- Designed to block growth in WNT-dysregulated tumor models including Ras^{mut}
- Modifications to enhance ADCC
- Phase 1/2 monotherapy trial ongoing in unselected previously treated patient population with HNSCC
- Cohort initiated in untreated HNSCC in combo with PD1 inhibitor
- Clinical update provided at AACR 2023²
- Potential registration path update planned for Q3 2023

Petosemtamab — Unique Mechanism of Action

Phase 1/2 Study

Cohort Expansion in HNSCC¹

Dose escalation is completed: No DLTs were reported; the dose of 1500 Cohort Expansion in HNSCC mg Q2W was selected based on safety, PK, and predicted receptor occupancy.²

Key HNSCC Inclusion Criteria

- Progression on or intolerant to anti-PD-(L)1 and platinum-based therapy in incurable recurrent or metastatic disease
- ECOG PS 0-1
- Measurable disease

Treatment Plan

- Petosemtamab 1500 mg
 IV, Q2W, 28-day cycle
- Until PD or toxicity
- Tumor assessment Q8W

Follow-Up

Survival follow-up for up to 18 months

Objectives and Analysis Population

- Primary objective: ORR using RECIST 1.1 per investigator
- Secondary objectives: ORR (per central review), DOR and PFS (per investigator and central review), OS, safety, PK, immunogenicity, and biomarkers
- Efficacy evaluable population: patients with ≥2 treatment cycles (≥8 weeks) with ≥1 post-baseline tumor assessment or discontinued early due to disease progression or death

Enrollment and Interim Analysis

Data cutoff date

01-Feb-2023

Enrollment

49 patients

Efficacy evaluable population

43 patients

6 patients excluded per protocol:

- 5 patients withdrew due to IRR on Day 1
- 1 patient with excl. criterion deviation

¹ Cohen, et al., AACR 2023

HNSCC Patient Population

Demographics and Disease Features

APRIL 14-19 • #AACR23

Demographics and Disease Features	N=49		
Age (years), median (range)	63 (31 - 77)		
Male / female	38 (78%) / 11 (22%)		
ECOG PS 0 / 1	14 (29%) / 35 (71%)		
Squamous cell carcinoma histology	48 (98%) ¹		
Tumor location			
Oropharynx	17 (35%)		
Oral cavity	15 (31%)		
Larynx	8 (16%)		
Hypopharynx	4 (8%)		
Other	5 (10%) ²		
Measurable disease	48 (98%)		

One patient ha	d p16-negative	epidermoid	cancer	with	unknown	oriain

² Other: nasal cavity and paranasal sinuses, nasopharynx, supraglottis, vocal cord, unknown origin

Tumor Biomarkers	N=49
EGFR	
■ H-score ³ , median (range) (n=35)	170 (0 - 300)
PD-L1	
Positive (CPS³ ≥1) / negative	20 (41%) / 9 (18%)
■ Unknown ⁴	20 (41%)
p16 status: oropharynx	N=17
■ p16 positive / negative ³	6 (35%) / 3 (18%)
■ Unknown ⁴	8 (47%)

³ By immunohistochemistry

⁴ Unknown: not yet available or analyzed, not collected, or inadequate quality

HNSCC Patient Population

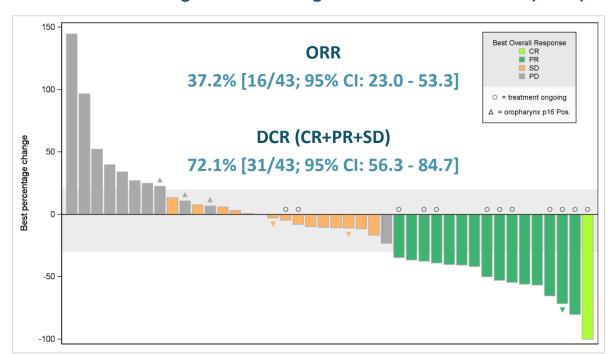
Prior Therapy, Disposition, and Exposure

APRIL 14-19 • #AACR23

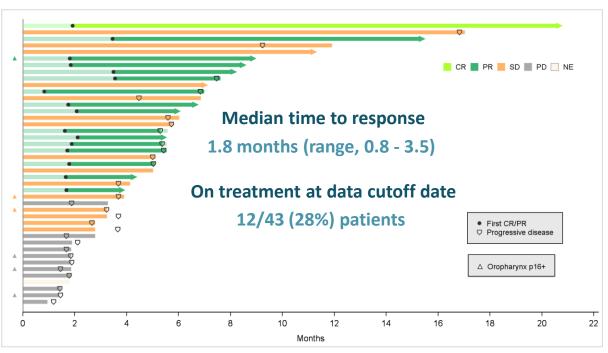
Prior Cancer Therapy	N=49
No. lines prior systemic therapy, median (range)	2 (1 - 4)
PD-(L)1 inhibitor	47 (96%)
Chemotherapy	46 (94%)
Platinum-based therapy	45 (92%)
Cetuximab	2 (4%)
Last therapy prior to petosemtamab	
Immunotherapy	27 (55%)
Immunotherapy + chemotherapy	14 (29%)
Chemotherapy	7 (14%)
Investigational	1 (2%)

Patient Disposition	N=49			
Petosemtamab treatment				
Treatment continuing	12 (25%)			
Treatment discontinuation	37 (75%)			
 Disease progression 	31 (63%)			
 Related adverse event¹ 	4 (8%)			
■ Other ²	2 (4%)			
Petosemtamab exposure duration, months				
Median (range)	4.1 (0.5 - 20.8)			

¹ Grade 3-4 IRR


² End of study reason was physician decision following IRR on Day 1 for one patient and one patient died due to underlying disease

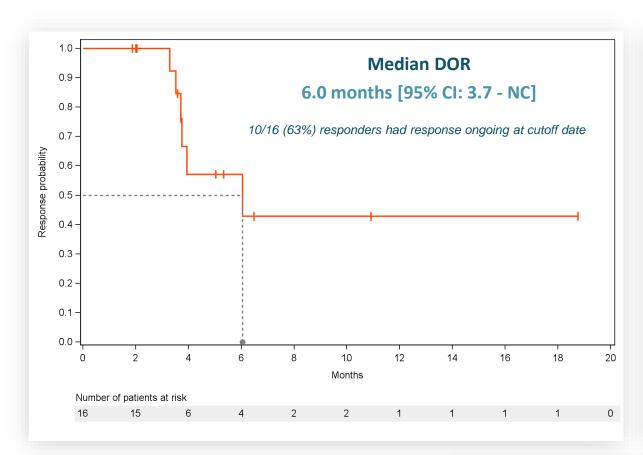
Robust Clinical Efficacy in HNSCC

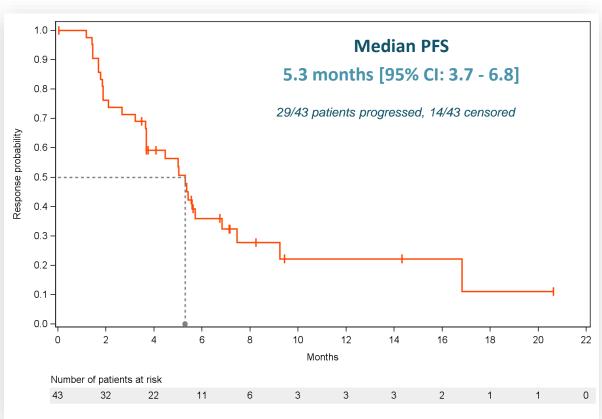

Overall response rate 37%

Best Percent Change in Sum of Target Lesions From Baseline (N=43)

One patient with best overall response of not evaluable not included due to no post-baseline tumor assessment p16 status was available in 9 of the 15 oropharynx patients (6 positive and 3 negative) in the efficacy evaluable population

Time to Response and Duration of Therapy


Arrows indicate treatment is ongoing at data cutoff date p16 status was available in 9 of the 15 oropharynx patients (6 positive and 3 negative) in the efficacy evaluable population



Petosemtamab Antitumor Activity in HNSCC

DOR, PFS (RECIST 1.1, per Investigator), and OS

Median OS

11.5 months [95% CI: 7.2 - 20.6]

29/49 patients still alive at data cutoff date

Safety Profile of Petosemtamab 1500 mg Q2W

Overall Safety

- Well tolerated and manageable safety profile based on 80 patients treated at the recommended dose across dose escalation and expansion cohorts of the study
- Gastrointestinal and skin toxicities were mostly mild to moderate
- No treatment-related grade 5 AEs

IRRs (Composite Term)

- 74% grade 1-4, 21% grade 3-4
- Mainly occurred during first infusion
- 6 of 80 patients discontinued on Day 1 due to a grade 3-4 IRR
- For all patients rechallenged after an IRR, rechallenge was successful
- IRRs were manageable with prophylaxis/ prolonged infusion (necessary on Day 1 only)

Preferred Term	Irrespective of (Causality (>10%)	Suspected Related		
Preferred ferm	All Grades	Grades 3-5 ¹	All Grades	Grades 3-5	
N patients with ≥1 AE	80 (100%)	42 (53%)	80 (100%)	26 (33%)	
Rash	29 (36%)	0	29 (36%)	0	
Dyspnea	22 (28%)	3 (4%)	13 (16%)	3 (4%)	
Hypotension	21 (26%)	5 (6%)	20 (25%)	5 (6%)	
Nausea	21 (26%)	1 (1%)	14 (18%)	0	
Dermatitis acneiform	20 (25%)	1 (1%)	20 (25%)	1 (1%)	
Infusion related reaction	17 (21%)	10 (13%)	16 (20%)	10 (13%)	
Blood Mg decreased	16 (20%)	4 (5%)	13 (16%)	3 (4%)	
Diarrhoea	16 (20%)	0	7 (9%)	0	
Erythema	15 (19%)	0	15 (19%)	0	
Fatigue	13 (16%)	1 (1%)	5 (6%)	0	
Asthenia	12 (15%)	2 (3%)	5 (6%)	1 (1%)	
Pruritus	11 (14%)	0	11 (14%)	0	
Constipation	11 (14%)	0	2 (3%)	0	
Skin fissures	11 (14%)	0	11 (14%)	0	
Decreased appetite	9 (11%)	2 (3%)	0	0	
Dry skin	9 (11%)	0	8 (10%)	0	
Flushing	9 (11%)	2 (3%)	8 (10%)	2 (3%)	
Headache	9 (11%)	0	7 (9%)	0	
Нурохіа	9 (11%)	2 (3%)	7 (9%)	1 (1%)	
Pyrexia	9 (11%)	0	3 (4%)	0	
Stomatitis	9 (11%)	0	8 (10%)	0	

Head & Neck Cancer (HNSCC)

Petosemtamab has the potential to become a new SoC

US Active Treatment Population Stage IVC¹

1L

~21,500 pts

Unmet Need

- Annual US Incidence ~67,000 with >15,000 deaths each year for all stages²
- 5 Year Survival for Stage IVC patients is ~13%
- 2L+ (post-IO) agents with improved efficacy & tolerability needed

Treatment Paradigm Trends - US

- **1L**: Pembrolizumab-based regimens are preferred frontline
- **2L**: Cetuximab-based regimens are often utilized, with some usage of pembrolizumab or nivolumab
- 3L: Highly fragmented, many patients still receive cetuximab-based therapies

Opportunity in Head & Neck Cancer

- Combo with PD-1 inhibitor underway
- Potential for 1L and/or 2L+ HNSCC

Merus

Petosemtamab

Potential First in Class bispecific targeting EGFR and LGR5

Meaningful Clinical Activity observed in previously treated HNSCC¹

- ORR 37.2% (n=43; 95% CI: 23-53.3%)
- Median DOR 6 months (95% CI: 3.7-NC)
- Antitumor activity independent of biomarkers

Generally, well tolerated & manageable safety profile¹

- No treatment-related grade 5 AEs
- Most frequent related AEs were infusion related reactions (IRRs)
- IRRs were manageable with prophylaxis/ prolonged infusion (necessary on Day 1 only)

Potential new standard of care for patients with HNSCC

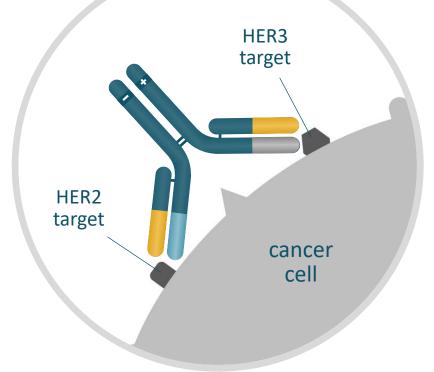
- Limited treatment options after pembrolizumab and platinum-based chemotherapy
- Significant market opportunity

Multiple possible development paths.

Plan to conduct a randomized registrational trial in front-line or 2L+ HNSCC with potential to support accelerated approval using an overall response rate endpoint.

Potential first in class and best in class for NRG1 fusion (NRG1+) cancer

Zenocutuzumab


MCLA-128 or Zeno HER2 x HER3 bispecific

NRG1 fusions

- Translocations of the Neuregulin-1 (NRG1) gene, also called Heregulin, the ligand for the HER3 receptor. Rare events in solid tumors reported to typically occur in the absence of other cancer driver mutations¹
- Reported as associated with poor prognosis¹, lower response rates to standard therapy², and shorter overall survival in lung cancer^{1,3}

Zeno

- Biclonics® antibody binds to HER2 and blocks HER3; 100-fold more potent in vitro than anti-HER3 mAbs tested⁴
- Granted orphan and fast track designation by FDA for pancreatic cancer, and NRG1+ cancer post standard of care, respectively
- Enrollment in eNRGy trial continues to support potential BLA⁵ filings in NRG1+ NSCLC⁵ and/or PDAC⁵, with potential subsequent tissue agnostic filing
- Additional clinical trials ongoing in CRPC⁵ with ADT⁵ and in NRG1+ NSCLC with afatinib

Zeno in NRG1+ Cancer: Global Phase 1/2 Clinical Trial

Phase 1/2 global, open-label clinical trial (eNRGy)

Early Access Program (EAP)

PDAC
NSCLC
Other solid tumors

Inclusion Criteria

- Locally advanced, unresectable or metastatic solid tumor
- NRG1+ cancer
- Previously treated with or unable to receive standard therapy
- ≥ 18 years-old
- ECOG PS ≤ 2

Treatment Plan

- Zenocutuzumab 750 mg IV Q2W until PD
- Tumor assessment Q8W

Follow-up
Survival follow-up:
up to 2 years

Endpoints and Population

Primary endpoint

Overall response rate (ORR) using RECIST v1.1 per investigator

Secondary endpoints

Duration of response, ORR per central review, safety, pharmacokinetics, antidrug antibodies

Primary analysis population

 \geq 1 dose of Zeno, opportunity for \geq 6 months follow-up at cutoff, and met criteria for primary efficacy population

Schram et al., ASCO 2022, efficacy data cutoff April 12, 2022 and safety data cutoff January 12, 2022

Enrollment and Analysis

Data cutoff date

12-Apr-2022

Enrollment

110 patients

64 sites

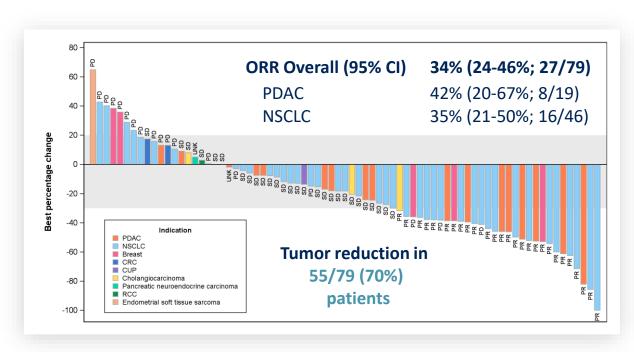
17 countries

Primary analysis population

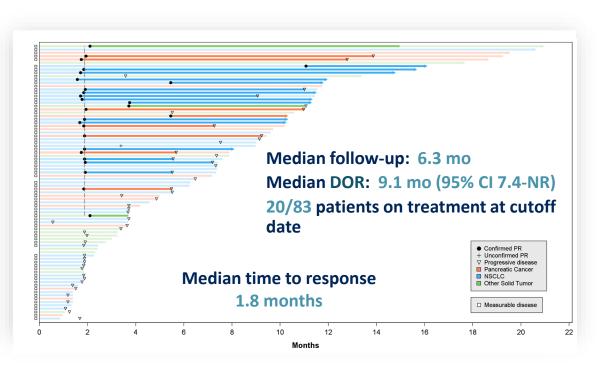
83 patients

27 patients excluded1:

- 21 patients < 6 months follow-up²
- 2 patients baseline scan > 5 weeks before first dose
- 2 patients with other genetic drivers (KRAS)
- 2 patients with prior anti-HER3 inhibitor²
- 1 patient with ECOG PS 3


^{1.} Per protocol/SAP

² One patient had 2 reasons for exclusion



Robust Clinical Efficacy in NRG1+ Cancer

Overall response rate 34%; Median DOR > 9 months

Note: The waterfall plot shows data for 75 of 79 patients. Change in tumor size could not be measured for 4 patients, 3 due to absence of post baseline assessment (early progression) and one due to incomplete assessment. NSCLC, Non-Small Cell Lung Cancer; PDAC, Pancreatic Ductal Adenocarcinoma

Arrows indicate treatment was ongoing at the cutoff date

Zeno: Continued Progress in NRG1+ Cancer and Beyond

Potential First & Best in Class for NRG1+ Cancer

Meaningful, durable response rate

- ORR 34% (95% CI: 24-46%; n=79)
- Median DOR 9.1 months (95% CI: 7.4-NR)
- Antitumor activity observed across multiple tumor types

Well tolerated safety profile

- Most adverse events were low grade
- Very low rate of discontinuations due to toxicity

Broad Zeno Clinical Development Program

Registration-directed program in NRG1+ cancer

- Enrollment continues; as of year-end 2022 more than 150 patients treated in the eNRGy trial and EAP
- Initial tumor-specific approach planned in NRG1+ NSCLC and/ or PDAC with potential tissue agnostic BLA to follow
- In NRG1+ NSCLC, combination therapy with afatinib currently recruiting

Beyond NRG1+ cancer

- Castration-resistant prostate cancer cohort with ADT ongoing
- Additional indications being considered

NRG1 Fusions More Common in Specific Types of Lung and Pancreatic Cancer

	Overall	Enrichment
	Non-Small Cell Lung Cancer (0.3%-1.7%) ^{1,2}	IMA (27%-31%) ³ (Invasive mucinous lung adenocarcinoma)
	Pancreatic cancer (0.5%-1.8%) ^{2,4}	KRAS wild-type (up to 6%) ⁵ pancreatic cancer
138	Other (<1%, eg, breast, cholangiocarcinoma, colorectal cancers) ²	

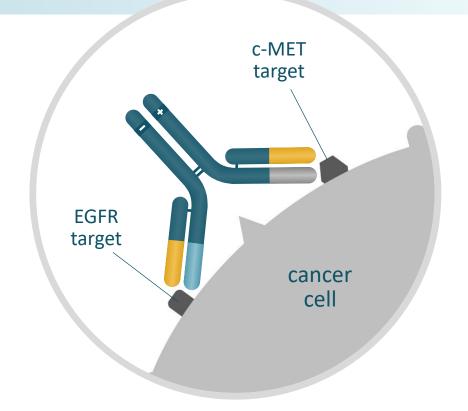
NGS Testing Rates⁶

Lung Cancer: 59%

- 20 labs cover ~80% of market
- ~ 36% includes NRG1 fusion testing (n=12)

Pancreatic Cancer: 37%

- 20 labs cover ~87% of market
- ~47% includes NRG1 fusion testing (n=12)



Designed to target lung cancer and other solid tumors expressing EGFR and c-MET

MCLA-129

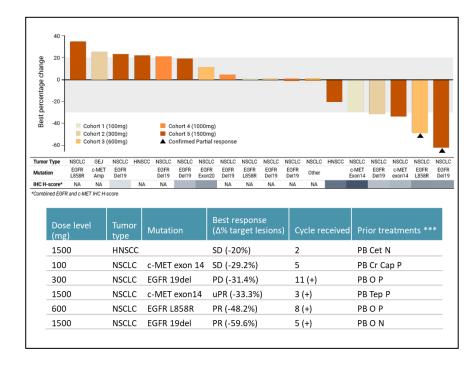
EGFR x c-MET Bispecific

- Targets both EGFR and c-MET on cancer cells
- Modifications to enhance ADCC, observed preclinically to have greater potency than amivantamab in high-affinity (FcyRIII 158V) or low-affinity (Fcy RIII 158F) variant effector cells¹
- Significant opportunity in lung cancer and other solid tumors
- Phase 1/2 trial ongoing; 2H22 clinical update provided at the **EORTC-NCI-AACR 2022**
- Expansion cohorts ongoing, including in combination with osimertinib, a third generation EGFR TKI
- Initial clinical data update from the expansion cohorts and further clinical development strategy update planned for 2H23

Dose Escalation Phase of MCLA-129 in NSCLC and Other Solid Tumors*

Study Design

Metastatic or locally advanced GE/GEJ, NSCLC w/ EGFR mutation and/or c-MET mutation or amplification; HNSCC or ESCC without biomarker selection MTD/ 100mg 22M (nr2) 100mg 22M (nr2) 1500mg 22M


Expansion Cohorts Ongoing

1 0
Cohort A: NSCLC with EGFR exon20 insertion
Cohort B: NSCLC with c-MET exon14 skipping
Cohort C: HNSCC
Cohort D + 3rd gen EGFR TKI: NSCLC 1L (EGFR sensitizing mutations)
Cohort E + 3rd gen EGRF TKI: NSCLC post-Osimertinib

Safety

	Irrespective of causality		Suspected related		
Preferred term	All grades n(%)	Grade 3-4 n(%)	All grades n(%)	Grade 3-4 n(%)	
Any event	19 (95%)	9 (45%)	19 (95%)	4 (20%)	
Infusion related reaction**	18 (90%)	1 (5%)	18 (90%)	1 (5%)	
Dyspnea	11 (55%)	1 (5%)	9 (45%)	1 (5%)	
Flushing	9 (45%)	-	9 (45%)	-	
Nausea	9 (45%)	-	8 (40%)	-	
Fatigue	6 (30%)	1 (5%)	3 (15%)	-	
Back pain	5 (25%)	-	2 (10%)	-	
Chills	5 (25%)	-	5 (25%)	-	
Myalgia	5 (25%)	-	4 (20%)	-	
Vomiting	5 (25%)	-	5 (25%)	-	
Cough	4 (20%)	-	3 (15%)	-	
Abdominal pain	3 (15%)	-	1 (5%)	-	
Arthralgia	3 (15%)	-	2 (10%)	-	
Dermatitis acneiform	3 (15%)	-	3 (15%)	-	
Lipase increased	(15%)	-	2 (10%)	-	
Oedema peripheral	3 (15%)	-	-	-	
Pruritus	3 (15%)	1 (5%)	3 (15%)	1 (5%)	

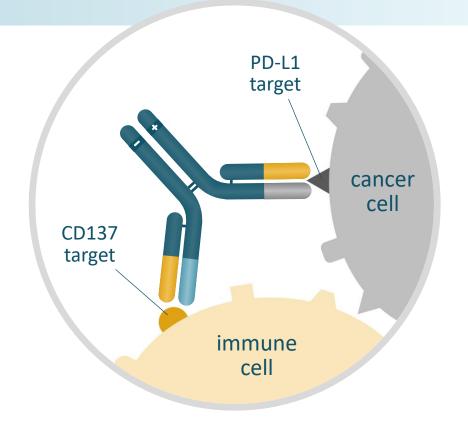
Efficacy

- No dose limiting toxicities (DLTs) reported
- The majority of IRR events occurred during the first infusion

^{*} Ou et al., EORTC-NCI-AACR 2022, data cutoff August 15, 2022; Safety: most frequent (>)10% adverse events among n=20 pts as of Aug 15, 2022 data cutoff date;

^{**} Grouped term covering all AEs occurring within 24 hours of the infusion considered by the investigator as an IRR;

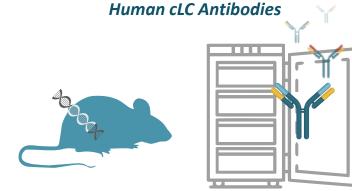
^{***} PB: platinum based chemotherapy; O: osimertinib; N: nivolumab; P: pembrolizumab; Cr: crizotinib; Cap: capmatinib; Cet: cetuximab; Tep: tepotinib; (+) patient ongoing; PR partial response; uPR unconfirmed partial response; SD stable disease; PD progression disease

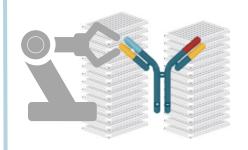

Designed to recruit and activate tumor infiltrating T-cells

Binds to PD-L1 on tumor cells and CD137 (4-1BB), a potent activator of tumor infiltrating T-cells, on activated T-cells¹

- Targets PD-L1 positive cells in the tumor and blocks the PD-1/PD-L1 inhibitory signal²
- Potential in a variety of solid tumors
- Global phase 1 trial ongoing, including in combination with a PD1 inhibitor
- Clinical update presented at ESMO Immuno-Oncology Congress 2021

MCLA-145


PD-L1 x CD137 bispecific


Our Platform – Unique Capabilities in Multispecific Antibodies

Generate

Evaluate

Thousands of Multispecific Abs

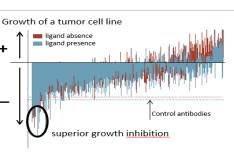
Patented Mouse Technology

"Merus Mouse" (MeMo®) to generate diverse, high quality common light chain (cLC) antibody panels

Established Inventory

Diverse panels of cLC antibodies against numerous targets

Multiclonics® Libraries


Robotics generate thousands of Multiclonics® by combining cLC antibody panels and our patented "DEKK" IgG heterodimerization technology

Unbiased Screening

In-format, unbiased functional screening in relevant molecular and cellular assays

IdentifyBest Candidates

Develop unique, best candidates from thousands of different Biclonics® and Triclonics® with potential to achieve meaningful clinical activity in patients

Merus Collaborations

Strategic relationships expand pipeline potential and clinical reach

Global collaboration of up to 10 Biclonics® programs

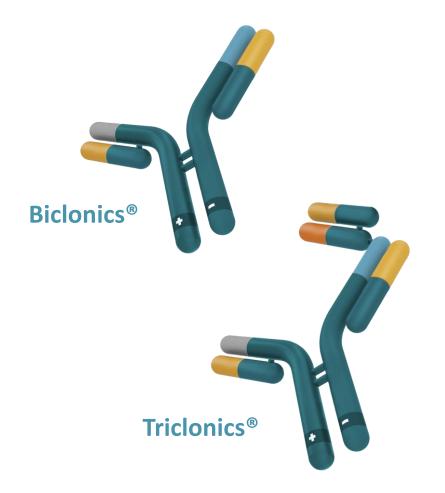
\$200M¹ at signing and research funding, option to co-fund development of two programs in return for 50/50 US profit split

Collaboration to develop up to 3 T-cell engaging Biclonics® programs

\$60M¹ at signing and research funding, milestones and royalties

MCLA-129, EGFR x c-MET collaboration

Betta has rights for China; Merus retains global rights ex-China, phase 1/2 trials ongoing Biclonics® Licensing Agreement for a Biclonics® CD3 bispecific antibody.


Phase 1 trial in Japan for ONO-4685, a PD-1 x CD3 bispecific antibody Patient identification agreements

Multiple agreements with top-tier diagnostic companies and industry and academic collaborators

Merus Multiclonics®

Bispecific and Trispecific therapeutic candidates for cancer with broad application for human disease

Large-scale screening of Biclonics® and Triclonics®

To select the best molecules from up to 1,000s of candidates

Fully human IgG structure

- Ease of manufacturing
- Low immunogenicity risk
- Predictable in vivo behavior
- Durable, consistent half life
- Potential for ADCC enhancement and Fc silencing

Novel, innovative trispecific Triclonics® format

- Stable format with predictable behavior; production similar to monoclonal antibody
- Allows for 3 specificities without the need to engineer each individual Fab
- Leverages Merus' extensive library of established antibody panels against ~50 established cancer targets

Robust IP portfolio of patents covering the platform technology, including

- Common light chain antibody generation and screening
- Dimerization by charge engineering

Merus Potential Milestones 2023

Zenocutuzumab in NRG1+ cancer & CRPC (Zeno, MCLA-128)

- Potential registrational path and timeline in NRG1+ cancer (planned 1H23)
- *Update clinical data* in NRG1+ cancer (planned 2023)
- Initial clinical data in combination with an ADT in CRPC (planned 2H23)

Petosemtamab
in Head and Neck & other cancers
(MCLA-158)

- ✓ <u>Update provided clinical data and regulatory path</u> in previously treated HNSCC
- ✓ <u>Initial clinical data provided</u> in previously treated gastric/esophageal cancer
- Update on path to potential registration in HNSCC (planned Q3 2023)

MCLA-129 in NSCLC & other cancers

- <u>Initial clinical data</u> update from the expansion cohorts (planned 2H23)
- <u>Update clinical development strategy</u> (planned 2H23)

Merus Overview

Bispecific and trispecific cancer therapeutic candidates in the human IgG format

Leading Multispecific Antibody (Multiclonics®) Platforms

Common light chain format permits broad, high throughput discovery of promising Biclonics® and Triclonics® antibodies with potential for meaningful clinical activity in patients

Established Pipeline with Multiple Active Molecules in the Clinic

Petosemtamab monotherapy and with pembrolizumab in head and neck cancer (HNSCC); Registration-directed trial of **Zeno** in NRG1 fusion (NRG1+) cancer and with androgen deprivation therapy (ADT) in prostate cancer (CRPC); **MCLA-129** in lung and other solid tumors

Near-Term Planned Trial Updates and Strong Cash Position into 2026¹

Petosemtamab potential registrational path update planned in Q3 2023; Zeno potential regulatory path and timing update planned in 1H23, clinical update on NRG1+ cancer at a major medical conference in 2023, Zeno in CRPC in 2H23; MCLA-129 in solid tumors in 2H23

Multiple strategic collaborations and license agreements, leading to multiple Biclonics® candidates in clinical development for potential future milestone and royalty opportunities

